If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-15=0
a = 9; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·9·(-15)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*9}=\frac{0-6\sqrt{15}}{18} =-\frac{6\sqrt{15}}{18} =-\frac{\sqrt{15}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*9}=\frac{0+6\sqrt{15}}{18} =\frac{6\sqrt{15}}{18} =\frac{\sqrt{15}}{3} $
| 6(x=5)-3(x=2) | | 2/3x+9=31 | | x+36=64 | | 3x+6+6x-3=180 | | -3x+8=111 | | 30+42+18a=180 | | 81+4x+7x=180 | | y+3.5=4.8 | | x=(2/5) | | 0=6t^2-30t+24 | | 75+2u+69=180 | | 0=6t^2-15t+24 | | 30+12w+3w=180 | | 16x-3=3x/ | | 12=x∘3 | | 83+67+15p=180 | | 5x–17=18 | | -2x+1=5x+22 | | 10+12.45x=60 | | 48+2t+4t=180 | | 0.15m+39=55.05 | | 5z-6=2z+5=180 | | 114=-12(z+5) | | y+18=43 | | −1/2x+15=−3 | | 6−3c=–5c−6 | | y=-6059+19 | | 20p−19p=5 | | -1+4x=18 | | y=-6059+10 | | x=8x+7+127 | | 90=6xX |